
MG008 ZX Spectrum Adapter for RC2014

What is it?
MG008 is an adapter to enable ZX Spectrum peripherals to be connected to
an RC2014. It is designed to overcome many of the problems that arise
when trying to get a ZX Spectrum peripheral to work with RC2014:

1. Both the standard RC2014 Serial I/O and most ZX Spectrum
peripherals have incompletely decoded address lines . This means1

there is a significant likelihood that a peripheral will clash with the
RC2014 Serial I/O

2. Some peripherals send out a “ROMCS” signal, and then expect to
“own” the lower 8k of address space. With a standard RC2014, this
will clash with the ROM

3. The ZX Spectrum uses all 16 address bits for I/O for some peripheral
devices. RC2014 (or at least, the standard BASIC) only uses the
traditional Z80 lower 8 bits

4. The ZX Spectrum 5V output to peripherals is quite weedy, and many
peripherals use the 9V output instead (usually converting it down to 5V
using a linear regulator). The RC2014 bus does not feature a 9V line2

How it does this is as follows:

1. There are numerous fully decoded RC2014 serial I/Os out there
(including the MG010) which will solve the first half of this problem.
For the second half, MG008 is able to bring in a SERACT (Serial Active)
signal from MG010 and use it to gate /IOREQ out to the peripheral3

2. MG008 has a LED to show when ROMCS is active, and a jumper to
enable the first and second 16k of address space to the peripheral to
be transposed (in other words, the peripheral will appear in the empty
address space between ROM and RAM on a standard Classic RC2014)

3 Although I have found one peripheral that does not connect to /IOREQ. Fortunately its
addressing was fine without needing gated /IOREQ

2 For the sake of completeness, the ZX Spectrum also runs at a much slower CPU clock
speed than the Classic RC2014. I have not found this to be an issue with any of the
peripherals I have tested, but if it does cause issues it’s easy enough to clock the RC2014
slower

1 It’s not unusual for a ZX Spectrum peripheral to be connected to only 3 or 4 of the 16
address lines

MG008 Instructions Rev -
Page 1

3. MG008 provides an addressable latch, which can be used to apply the
upper 8 bits to the address bus during I/O operations

4. MG008 provides a 9V input terminal block to power peripherals where
required

It is best to think of MG008 as a tool to enable experimentation with ZX
Spectrum peripherals, rather than a device that is guaranteed to get all
modes of any peripheral working with RC2014

MG008 Instructions Rev -
Page 2

What’s in the kit?

Name Quantity Description Picture Present?

C1-5 5
Capacitor, ceramic,
100 nF

❟

F1 1
Fuse, PCB Leaded,
1 A, 125 V

❟

J1 1 Terminal, screw

❟

JP1-8 1
Header, male, 2 x
8 pin, straight

❟

JP9 1
Header, male, 1 x
2 pin, straight

❟

JP1-9 Shunt 9 Jumper shunt

❟

LED1,2 2

LED, Red, Through
Hole, T-1 (3mm),
20 mA

❟

R1,2 2
10k Resistor,
250mW

❟

R2 1
330R Resistor,
125mW

❟

R4 1
1k Resistor,
250mW

❟

RN1 1
Fixed Network
Resistor, 10 kohm

❟

MG008 Instructions Rev -
Page 3

U1 1 74HCT541

❟

U2 1 74HCT688

❟

U3 1 74HCT573

❟

U4 1 74HCT02

❟

U7 1 74HCT86

❟

U4,5 sockets 2 14-pin DIP socket

❟

MG008 Instructions Rev -
Page 4

U1-3 sockets 3 20-pin DIP socket

❟

P2 1
Header, male, 2 x
40 pin, straight

❟

PCB 1 MG008 PCB

❟

MG008 Instructions Rev -
Page 5

How do I build it?
There’s a good chance you will have some soldering experience, as you’re
likely to have built an RC2014 or equivalent to plug your MG011 into. If you
haven’t, I recommend searching for an online tutorial, there are some good
ones on YouTube.

Recommended tools include:
● Soldering iron (ideally temperature controlled)
● Multicore solder
● Small snips to cut off leads
● Small pliers
● Desoldering pump and/or braid
● Anti-static wrist strap (or steer clear of materials that cause static and

touch a grounded object every now and then).

The normal rule of thumb is to solder the lowest height components first,
working up:

● R1-3. Orientation doesn’t matter.
● F1. Orientation doesn’t matter.
● P2. This is normally supplied with 80 pins, therefore two need to be

carefully cut off using a sharp knife. Please note P2 needs to be
soldered on the other side of the PCB to other components.
Solder one joint only, check the alignment, melt solder and correct
alignment if required before soldering remaining joints.

● C1-5. Orientation doesn’t matter
● Sockets for U1-5 (do not fit ICs yet). Similarly to P2, solder two

opposite corners, check the socket is flat on the board before
continuing. Make sure the notches at the end of the sockets match
with the PCB graphics, to reduce the risk of installing the ICs the
wrong way round

● RN1. Note that the dot on one end should align with the marking on
the PCB RN1 graphic

● LED1-2. Make sure the flat side is aligned with the graphic on the PCB
● JP1-8 (actually a single part), JP9
● J1

MG008 Instructions Rev -
Page 6

If you have flux cleaner, clean all joints. Now inspect them carefully for
issues (a magnifying glass of some sort can be very helpful, the camera on
some phones works quite well).

The final step prior to plugging into the host system and testing is to fit the
ICs into their sockets. Their legs will probably need a bit of gentle bending
on a table or similar surface, to bring the two rows a little closer to each
other. Pay attention to orientation (even after all this hard work, it’s easy to
get wrong).

MG008 Instructions Rev -
Page 7

How does it work?

MG008 Instructions Rev -
Page 8

RC2014 and the ZX Spectrum are both Z80-based, therefore the majority of
connections pass straight through. The exceptions are:

● If MG010 is present in the system, U4.2 and U4.2 take the SERACT
signal from USR3 (which is the MG010 saying it’s busy doing I/O) and
use it to disconnect IOREQ from the peripheral

● LED1 shows that ROMCS is active, meaning that the peripheral wants
to use the lower 8k of address space

● When JP1 is jumpered and A15 is at logic zero, U4.1 and U5.1 invert
the A14 signal going out to the peripheral. This moves the peripheral
from the lower 16k of address space to the next 16k block up,
enabling it to be peeked and poked

● U1 passes the upper 8 bits of address bus out to the peripheral
unchanged when a memory request is active, but disconnects this
during I/O requests

● When I/O requests are active, the 8 bits loaded into U3 are connected
to the upper 8 bits instead.

● U2 and JP1-8 set the address of U3, via which the value above can be
loaded

● JP1 allows 9V to be fed to the peripheral from an external power
source. J2 and J3 are designed to enable connection of a 5V to 9V
switched mode power supply PCB, to make MG008 self contained. I
have prototyped and tested this, but it would cost as much as MG008
so I haven’t completed the design. If one or two people contact me
and say they would like this capability, I would definitely consider
finishing it

MG008 Instructions Rev -
Page 9

How do I use it?

Before plugging anything in, research the peripheral:

● What power does it need?
● What address(es) does it use?
● Is it accessed by I/O or memory requests?
● What commands (if any) does it expect?

This should not be too difficult, there are a wealth of websites out there
giving all these kinds of details. Worst case (if you’re happy to do this),
opening up the peripheral and examining which pins are connected will
reveal a lot of information

An address needs to be set to allow U3 to be loaded. To use an example:

Jumper A7 A6 A5 A4 A3 A2 A1 A0

Status Open Open Open Open Jumper Jumper Jumper Jumper

Value 0 0 0 0 8 4 2 0

Summing the values gives a decimal address of 15. OUT 15, X will load an 8
bit number X ready for any I/O requests to the peripheral.

Take care plugging in

When connecting to a RC2014 with single row connectors, then the row of
MG008 P2 contacts closest to the edge of the PCB needs to be plugged in.
There are signals coming out of the ZX Spectrum edge connector that are
present in the other row of P2, and they have all been brought through.
Having said that, I have yet to find a peripheral that uses them.

On the other end, I have tried to make the keying notch on P1 the right size,
but there’s no specification for this dimension (that I can find), and the key
in the connector varies hugely from peripheral to peripheral. Therefore be a
little careful with alignment as you plug the peripheral in. These edge
connectors were not particularly reliable when new, and they haven't got any
better with age. It’s worth checking for bent contacts and

MG008 Instructions Rev -
Page 10

unplugging/refitting the peripheral a few times to get the best connection
possible.

Think about power

If the peripheral only needs 5V, then you should have no worries. A typical
RC2014 setup should be able to supply more 5V current than a ZX Spectrum
ever could.

If the peripheral needs 9V, then a 9V power supply will be needed that is
happy being connected low side to low side with whatever 5V supply is being
used for the RC2014. If RC2014 is being powered by 9V (using an onboard
regulator to supply RC2014 5V), then an easy way to proceed is to connect
the high side of that 9V (and ideally the low side) to screw terminal J1. I
have seen peripherals take in excess of ½ amp, which must have been
pushing the standard Spectrum 9V power supply brick quite a bit.

MG008 Instructions Rev -
Page 11

Example 1 - Kempston Joystick Interface

This is extremely easy, as it responds to standard INP(31) commands:

BASIC CODE

10 LET A = INP(31)
20 PRINT A
30 GOTO 10

Values produced are:

1 Right (R)
2 Left (L)
4 Down (D)
8 Up (U)
16 Fire (F)

MG008 Instructions Rev -
Page 12

Example 2 - Cursor Mode Joystick Interface

This interface simulates the cursor keys on the keyboard. These need to be
read using 16 bit I/O addresses:

EFFEh (61438 decimal): Down, Up, Right, Fire
F7FEh (63486 decimal): Left

EF00h is 61184, which means 239 (61184/256) needs to be loaded into U3
for the upper 8 address bits, and “INP(254)” will then read FE for the lower 8
bits.

F700h is 63232, which means 247 (63232/256) needs to be loaded into U3
for the upper 8 address bits, and “INP(254)” will then read FE for the lower 8
bits.

(Examples assume MG008 address is set to 15 decimal)

BASIC CODE Notes

10 OUT 15,239

20 LET A = INP(254)
30 PRINT A

Set upper 8 address bits to
“EFXX”
Read EFFE

BASIC CODE Notes

10 OUT 15,247

20 LET A = INP(254)
30 PRINT A

Set upper 8 address bits to
“F7XX”
Read F7FE

Values produced for EFFE are:

U = 23 (10111)
D = 15 (01111)

MG008 Instructions Rev -
Page 13

R = 27 (11011)
F = 30 (11110)

Values produced for F7FE are:

L = 15 (01111)

MG008 Instructions Rev -
Page 14

Example 3 - Currah Microspeech

Please note this device needs 9V power.

This is a device that sends out a “ROMCS” signal, and then expects to “own”
the lower 8k of address space.

Normal operation is that it is toggled on or off by accessing 0038h (read or
write). The device can then be accessed to check status or send allophones
at 1000h. I put a short intro to allophones and their usage in my
instructions for MG005 (on my website).

I use this device by starting off with JP9 jumpered, to move it (in address
terms) away from the RC2014 ROM. Jumpering JP9 adds 4000h to any
read/write to the Microspeech:

● On/off is now 0038h + 4000h = 4038h or 16440 decimal
● Device access is not 1000h + 4000h = 5000h or 20480 decimal

Before running the below code, the Microspeech must be toggled on (if it did
not start in that state) by sending “PEEK(16440)” so that the ROMCS LED
lights.

BASIC CODE Notes

10 DATA 27,7,45,15,53,3,46,51,45,1,21,3
20 LET LE=12
30 DIM XX (LE)
40 FOR Y=1 TO LE
50 READ XX(Y)
60 NEXT Y
70 FOR Z=1 TO LE
80 IF (PEEK(20480) AND 1)=0 THEN
GOTO 100
90 GOTO 80
100 POKE 20480,XX(Z)
110 NEXT Z

Allophones for “Hello World”

Make an array XX to hold
them
Fill array with allophones

Loop through allphones
Check whether device is
busy, if not GOTO 100

Send allophone to device
Go round for next one

MG008 Instructions Rev -
Page 15

Acknowledgements/Legal
MG008 has been designed for RC2014 with reference to the RC2014 Module
Template. All pinouts used are in compliance with the RC2014 Module
Template.

RC2014 is a trademark of RFC2795 Ltd.

MG008 has been designed for hobbyist use only and is not to be used for
safety or business critical applications.

MG008 is designed for experimentation and is not guaranteed to get any
given peripheral, or any given mode of operation of a peripheral working.
ZX Spectrum software will of course not run on RC2014, so any functions
enabled by specific software routines will not work out of the box.

Plugging 1980’s peripherals into a RC2014 system is not risk-free, especially
if they are not known to be working. It is possible the RC2014 may be
damaged. Having said that, you may wish to plug an unknown-condition
peripheral into your RC2014 first, rather than your priceless Issue 0 ZX
Spectrum….

MG008 Instructions Rev -
Page 16

