
MG006 Programmable Time Switch

What is it?
MG006 is designed to switch a low voltage AC or DC line on and off at
user-configurable time intervals. It is battery powered, and time intervals
are set by means of a DIP switch. It is based on the ATTINY44A
microcontroller, which can be removed and reprogrammed (using Arduino
IDE) to accommodate different time periods, or even for a different use
altogether.

MG006 Instructions Rev -
Page 1

What’s in the kit?

Name Quantity Description Picture Present?

B1 1
CR2032 battery
holder

❟

C1 1
Capacitor,
ceramic, 100 nF

❟

F1 1
Fuse, PCB Leaded,
1 A, 125 V

LED1, 2 2

LED, Red, Through
Hole, T-1 (3mm),
20 mA

❟

R1 1
Resistor, 10 kohm,
125 mW

❟

R2 1
Resistor, 330 ohm,
125 mW

❟

S1 1 Tactile switch

❟

S2 1 DIP switch

❟

U1 1 ATTINY44A

❟

U2 1 VO14642AT

❟

MG006 Instructions Rev -
Page 2

U1 socket 1 14-pin DIP socket

❟

J1 1
Header, male, 1 x
2 pin, straight

❟

J2 1 Terminal, screw

PCB 1 MG006 PCB

❟

What’s not supplied?
A CR-2032 battery.

How do I build it?
This kit assumes basic through hole soldering skills. If you’re not too
confident, I recommend searching for an online tutorial, there are some
good ones on YouTube.

Recommended tools include:
● Soldering iron (ideally temperature controlled)
● Multicore solder
● Small snips to cut off leads
● Small pliers
● Desoldering pump and/or braid
● Anti-static wrist strap (or steer clear of materials that cause static and

touch a grounded object every now and then).

The normal rule of thumb is to solder the lowest height components first,
working up (orientation doesn’t matter unless stated):

MG006 Instructions Rev -
Page 3

● Before you solder anything, the small square pad that acts as the
negative battery contact needs to be built up a little. Heat it up with a
soldering iron, and apply a layer of solder sufficient to rise above the
surrounding blue solder mask

● R1, R2
● F1
● C1
● U2. Be careful to solder the right way round. Solder two opposite

corners, check the IC is flat on the board before continuing
● Socket for U1 (do not fit IC yet). Again, solder two opposite corners,

check the socket is flat on the board before continuing. Make sure the
notch at the end of the socket matches with the PCB graphics, to
reduce the risk of installing the IC the wrong way round

● B1
● S1, S2. S2 needs to be the right way round, per the PCB graphic
● LED1, LED2. Be careful to solder in the right way round, per the PCB

graphic
● J1
● J2

If you have flux cleaner, clean all joints. Now inspect them carefully for
issues (a magnifying glass of some sort can be very helpful, the camera on
some phones works quite well).

The final step prior to fitting the battery and testing is to fit the U1 into its
socket. Pay attention to orientation.

MG006 Instructions Rev -
Page 4

How does it work?

U1 does the hard work, switching up to 1A through U2 and F1. S1 resets
U1, with R1 holding the reset line high otherwise. S2 provides inputs to
“Pins 1-6” of U1, which U1 reads to set on and off times. U1 controls LED1
and LED2 via “Pins 9 and 10” during startup to indicate the timings selected.

MG006 Instructions Rev -
Page 5

How do I use it?
The circuit to be controlled needs to be connected across J1 or J2 (polarity
doesn’t matter).

S2 is read after power on or a reset and needs to be configured as follows to
set on times:

Switch 1
(“ON”=0)

Switch 2
(“ON”=0)

Switch 3
(“ON”=0)

On time
(mins)

LED 1
Flashes

0 0 0 1 1

0 0 1 2 2

0 1 0 4 3

0 1 1 8 4

1 0 0 16 5

1 0 1 32 6

1 1 0 64 7

1 1 1 128 8

Switches 4-6 and LED 2 work in the same way for off times.

When the battery is inserted, or reset pushed, LED 1 and then LED 2 flash to
confirm the times set. Operation then starts with an “off” time, followed by
“on”, then “off”, then “on” etc. until either the battery is removed (or is
exhausted) or reset is pushed.

Acknowledgements/Legal

MG006 has been designed for hobbyist use only and is not to be used for
safety or business critical applications.

MG006 is NOT designed to be used to control or be connected to any kind of
dangerous voltage.

MG006 Instructions Rev -
Page 6

To program the ATTINY44A I used the ARDUINO IDE, and ATTINY core
library located at:

https://github.com/damellis/attiny

This is copyright (c) 2005 David A. Mellis

This library is free software, which can be redistributed and/or modified
under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.

The ATTINY can be reprogrammed to change operation by removing and
connecting to an ARDUINO In-System-Programmer (ISP) and using the
ARDUINO IDE.

The standard code follows. It is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.

MG006 Instructions Rev -
Page 7

https://github.com/damellis/attiny

[code]
/*
MG006 Rev- Timer ATTINY 44A
Timings 1,2,4,8,16,32,64,128 minutes

*/

int time = 500;
int ontime = 1;
int offtime = 1;
unsigned long onms = 60000;
unsigned long offms = 60000;

void setup() {
// initialize outputs.
pinMode(10, OUTPUT);
pinMode(9, OUTPUT);
pinMode(0, OUTPUT);
// initialize inputs.
pinMode(6, INPUT_PULLUP);
pinMode(5, INPUT_PULLUP);
pinMode(4, INPUT_PULLUP);
pinMode(3, INPUT_PULLUP);
pinMode(2, INPUT_PULLUP);
pinMode(1, INPUT_PULLUP);
// read in on switch values.
ontime = ontime + digitalRead(3);
ontime = ontime + digitalRead(2) * 2;
ontime = ontime + digitalRead(1) * 4;
offtime = offtime + digitalRead(6);
offtime = offtime + digitalRead(5) * 2;
offtime = offtime + digitalRead(4) * 4;
// confirm switch values via LED flashes.
for (int a = 1; a<= ontime; a++) {
digitalWrite(10, HIGH);
delay(time);
digitalWrite(10, LOW);
delay(time);

}
for (int a = 1; a<= offtime; a++) {

MG006 Instructions Rev -
Page 8

digitalWrite(9, HIGH);
delay(time);
digitalWrite(9, LOW);
delay(time);

}
// convert switch values to ms
if (ontime > 1) {
onms = (pow(2, (ontime-1))*60000);

}
if (offtime > 1) {
offms = (pow(2, (offtime-1))*60000);

}
}

void loop() {
digitalWrite(0, LOW);
delay(offms);
digitalWrite(0, HIGH);
delay(onms);

}
[/code]

MG006 Instructions Rev -
Page 9

